JIVE/JIVE2/MEHRLIN - Project early results

Towards clean public transportation with fuel cell buses
$2^{\text {nd }}$ JIVE 2 CEE hydrogen bus roadshow - $6^{\text {th }}$ October 2023 - Tartu

Presentation by H2EST

The JIVE, JIVE 2 and MEHRLIN projects are the flagship fuel cell bus projects in Europe aiming to deploy c. 300 buses and 18 HRSs by 2025

Objectives:

- Deploy ~300 buses across 16 European cities and regions in 6 countries - the largest deployment attempted to date
- Validate large scale fleets in operation
- Stimulate the FCB market
- Achieve a maximum price of $€ 650 \mathrm{k}$ (JIVE) and $€ 625 \mathrm{k}$ (JIVE 2) for a standard fuel cell bus
- Trial joint procurement methods to access economies of scale
- Deploy 18 Hydrogen Refuelling Stations (HRSs)
- Enable new cities and regions to trial hydrogen technologies
- Demonstrate routes to low cost renewable H_{2}
- Analyse the technical and economic performance of

16 Sites6 Deployment Countries 14 Observer Regions

Clean Hydrogen

 PartnershipEuropean funding from the Clean Hydrogen
Partnership for the JIVE \& JIVE 2 projects and CEF funding for MEHRLIN catalyses private and public investment on the national and regional levels. HRSs under real conditions

Overview of the current status with regards to the deployment of the fuel cell buses and hydrogen refuelling stations

As of end of June 2023, ~82\% of the buses have entered into operation (i.e., 244 buses), and close to $\mathbf{1 3 M} \mathbf{~ k m}$ have been driven cumulatively.

Regarding hydrogen refuelling stations, 16 were fully operational at the end of June 2023 and more than 1 million kg of hydrogen were dispensed (>63000 fills).
Hydrogen refuelling stations (JIVE/JIVE2/MEHRLIN)

\square Operational HRS \square HRS not yet fully operational \square Operational buses \square Buses not yet operational \square Operational buses \square Buses not yet operational

$$
\text { - } 5 \text { European OEMs SAFRA S caetanobus VANHOOL SOLARIS }
$$

- Single deck ($\sim 67 \%$) and double deck ($\sim 33 \%$) buses
- Fleets from 5 to 50+ buses

1 ${ }^{\text {st }}$ JIVE 2 CEE (Central Eastern European) Roadshow - Successful JIVE 2 initiative that allowed interested cities to test the technology

ZERO EMISSION

- Total distance of 1641 km and consuming approximatively 125 kg of H 2 , resulting in an average consumption of $7,6 \mathrm{~kg} / 100 \mathrm{~km}$. Bus has a range of at least 400 km
- 13 events - attended by over 900 participants
- Most of the cities that trialed the technology (over 90\%) have announced a formal interest in deploying FCBs after the roadshow
- In total, over 150 hydrogen buses will be deployed in the region over the next years
"The efficiency of hydrogen cells is constantly increasing. Thanks to that hydrogen buses become a reliable alternative to vehicles using diesel. This was also confirmed by the intensive 3-day testing of the CAETANO hydrogen bus on one of the city lines in Trnava."

Fuel cell buses offer several advantages over conventional and other zero emission technologies. Advantages already proven by the JIVE projects

$\frac{\text { ZERO EMISSION }}{\text { Z }}$

High daily range

Up to 500 km without refuelling satisfies the
longest routes and provides operational Project results
resilience
JIVE and JIVE 2 buses have demonstrated ranges of $>350 \mathrm{~km}$. Models have since been made available claiming higher ranges.
$1^{\text {st }}$ JIVE 2 CEE bus roadshow results
Range of at least 400km - - estimated that could be approx. 500 km in the flat city of Paks.

Increased passenger capacity $\mathbf{1 8 m}$ and double decker models now widely available

Enhance European competitiveness
Due to the European manufacturing base and the supply chain

Scalability

The refuelling infrastructure can be scaled up to accommodate growing fleets Project results

Most of the transport operators within the JIVE/JIVE 2/MEHRLIN projects have already ordered further hydrogen buses or are aiming to increase their hydrogen bus fleet in the next years - in some cases this requires little to no station update

Zero tailpipe emissions

 As fuel cell buses operate locally emission free, of a pure fuel cell bus fleet would result in the complete avoidance of combustion nitrogen oxides and particulate matter emissionsA concrete answer to ambitious policy targets set for transport decarbonisation
Project results
With hydrogen from electrolysis using electricity from wind power throughout the JIVE sites, an

Performance of the buses (fuel consumption) - buses are outperforming the project objectives

Specific Fuel Consumption

$<9 \mathrm{~kg} / 100 \mathrm{~km}$ (standard buses)
$<14 \mathrm{~kg} / 100 \mathrm{~km}$ (articulated buses)
Target achieved at present

- Excellent fuel efficiency with consumptions currently between 6.3 and 9 kg of hydrogen per 100 km for 12 m and double decker buses (equivalent to between 20 and 23 litres of diesel) and less than $9 \mathbf{k g}$ per 100 km for 18 m articulated buses (equivalent to less than 30 litres of diesel).
- Buses are outperforming the objectives.
- Significant reduction in fuel consumption over the projects (see chart)

Results from the ${ }^{1}$ st roadshow

- Average consumption of $7.6 \mathrm{~kg} / \mathbf{1 0 0 k m}$

Total numbers deployed / to be deployed in the projects
27 FCBS 47 FCBS 54 FCBS 298 FCBS

Drop in bus prices (CAPEX) compared to previous FCB projects

ZERO EMISSION

The prices of the buses purchased under JIVE and JIVE 2 have significantly decreased compared to previous projects.

Actual bus capex - historic FCB projects

Prices have significantly decreased since the first funded FCB projects, a
\| success of the increasing scale of the JIVE deployments.

Actual bus capex - JIVE \& JIVE 2

, Minimum costs are accessible for vehicle orders of >10 buses. Price varies I depending on specifications.
I The JIVE and JIVE 2 targets have been achieved. The Clean Hydrogen
I Partnership 2020 target was achieved early in 2018.
While fuel cell bus costs have fallen significantly, further reductions will be I needed for commercially viable offers.

NB: 1) Prices shown are the base bus prices which excludes add-ons such as USB ports, WiFi lighting, 2) 5 orders were excluded in total: 4 due to data availability, 1 order was for 18 m buses

Early results - FCBs systems against economic parameters (TCO analysis)

ZERO EMISSION

- When long and demanding routes shall be served, fuel cell buses are advantageous in terms of their higher operating range and their flexible deployability, as they can be used flexibly on any route without having to think about recharging options.
- Fuel cell buses therefore offer significant advantages for bus schedules with high range requirements.
- It can be expected that with the ongoing increasing maturity of FCBs and hydrogen technology the TCO of FCBs will decrease.
- This is already the case when important orders are made, harnessing economy of scale effects.
- Infrastructure

■ Fuel

■ Driver

- Bus maintenance (incl.
component replacement)
- Bus

Disclaimer: Example TCO structure for 1 site - has to be pointed out that the results only depict the situation at one of the two sites investigated, and do not allow any general statement

Existing resources/initiatives within the JIVE projects to help transport operators interested in the technology

JIVE User Group: Objectives, composition and format

- Main Goal: Exchange feedback and discuss operational assessment from the point of view of external PTO/PTAs to JIVE deployment sites
- Composition: Around 20 PTOs/PTAs interested in Fuel Cell Technology and deployment and integration of FC Buses in their fleet
- Format: it follows JIVE projects' results in terms of bus performance, service quality, operations, maintenance, and other relevant aspects related to fuel cell bus technology through dedicated meetings (2 per year).
- Participation: the experts benefits from a lump sum of 560 euros per meeting to support his/ her participation in the User Group meetings through a contract.
- Events: Meetings are aligned with relevant PT events or technical visits.

JIVE/JIVE2/MEHRLIN Best Practice report

- Available on the project website (here) - 100 page document with all the learnings of the projects divided in the project life phases:

1) Stage 1 - Project Conceptualisation
2) Stage 2 - Financing and Planning
3) Stage 3 - Procurement
4) Stage 4 - Deployment and Operations

- A Case Study was developed (section "Bringing it all Together") with info boxes that summarise the essentials for a successful FCB deployment project

Early results on environmental impacts and external cost benefits of FCBs systems

Results on avoided environmental impacts

- The hydrogen production by electrolysis using electricity from wind power results in the lowest external cost.
- With hydrogen from electrolysis using electricity from wind power throughout the JIVE sites, an overall Global Warming Potential (GWP) reduction of 82% can be achieved.

Global Warming Potential for diesel bus replacement by FCBs - All sites

Local NOx emissions- All sites / Same graph for PM 2.5 emissions

The projects are yet to be finished; $1^{\text {st }}$ findings show general target feasibility but also highlight room for improvement

Bus Performance

Distance travelled
JIVE: min. 132,000km/bus in 3 years
JIVE 2: min. 150,000km/bus in 3 years
Availability of Buses
>90\%

Specific Fuel Consumption
<9kg/100km (standard buses)
<14kg/100km (articulated buses)

HRS Performance

Availability of Station Unit
>98\%

Amount of Hydrogen Dispensed
JIVE: >4,500kg/bus/year

- Comparison with past projects - Buses and refuelling stations in JIVE/JIVE 2 have, overall, the potential to outperform their counterparts or have already done so.
- Teething periods - JIVE/JIVE 2 local bus fleets did not exhibit pronounced teething periods, unlike in earlier projects.
- JIVE/JIVE2 local fleet are no longer considered a potential "add on" to normal operations by operators but part of day-to-day-service.

Target feasibility

Target achieved at present

Room for improvement - several sites are already close to reaching this target

Performance of the Buses (Availability) - Good performance in seneral

Availability

- Buses from all manufacturers represented in the projects have proven the capability to surpass the 90% target during some parts of the reporting period. The fleet averages at five sites are higher than 90%. Single sites have reached 99\% availability.
- Average availability across all JIVE sites ~ 85 \% at the end of 2022.

- Analysis shows that often non-hydrogen related components cause more than half of the downtimes

Downtime reasons FCBs - Based on data from JIVE projects

* Data up to 2022 ; not all buses are therefore yet operational. The JIVE and JIVE 2 projects will run until June 2024 and June 2025 respectively.
- 01 - Scheduled maintenance
= 02 - FC stack issue
= 03 - FC balance of plant

04 - Electrical components

- 05 - On-board hydrogen storage tank
- 06 - High voltage battery
- 07 - Peripheral mechanical components

Use-case Estonia

- Tallinn $5.9 \mathrm{~kg} / 100 \mathrm{~km}$ (ametlik spec $5.5 \mathrm{~kg} / 100 \mathrm{~km}$)
- H2 hind Tallinna tanklas $\sim 10 € / \mathrm{kg}$
- 1 km hind $=\sim 0.59 €$
- 64 PAX $=0.009 €$ PAX KM
- H2 90k km/a = $5.3 \mathrm{tpa}=53.1 \mathrm{k} €$
- CNG 90k km/a $=36 \mathrm{tpa}=43.2 \mathrm{k} €=$
- CNG CO2e 98.9 tpa = 9890€ @ 100€/t CO2
- With climate price = price parity?
- With health price = ?

