

SIP "Energy Carriers" and Potential of Ammonia - a door opener of a low carbon society -

4 September, 2018

Bunro Shiozawa

Deputy Program Director

Cross-ministerial Strategic Innovation Promotion Program SIP "Energy Carriers" Cabinet Office of Japanese government

Energy and environmental constraints of Japan

- Japan relies on her 90% primary energy supply on fossil energy source.
- To reduce GHG emission 80% by 2050 and to enhance energy security of Japan, we will have to greatly increase supply of renewable energy.

	Primary energy	=	Fossil	+	Nuclear	+	Renewable
(Present)			89%		1%		10%
(2050)	Stay		↓80%		↓90-40%		Need to substantially increase

4 September 2018

Policies and actions toward a Low Carbon Society

Speech by Prime Minister Abe at COP21

"The key to acting against climate change without sacrificing economic growth is the development of innovative technologies. To illustrate, there are technologies to produce, store and transport hydrogen towards realizing CO_2 -free societies,"

"Strategic Plan for Hydrogen Utilization" (December 2017)

- Japan's first comprehensive plan on introduction and utilization of hydrogen energy, developed by the ministerial conference (chaired by Prime Minister) consisting of relevant ministers of the Japanese government.
- The following statement was made by the minister overseeing the Council of Science, Technology and Innovations (CSTI) at the conference:

"Ammonia is a promising H₂ energy carrier, and **direct use of ammonia** is one of the most feasible options for the construction of a low-carbon society. "

"National Basic Energy Plan" (May 2018)

- The Basic plan described as the following with regard to the Hydrogen energy:

"According to the "Strategic Plan for Hydrogen Utilization", further promote the use of hydrogen energy not only in transportation area but power generation and industry areas."

4 September 2018

Scenario for "Strategic Plan for Hydrogen Utilization"

H₂/NH₃ related technology roadmap of the "Strategic Plan for Hydrogen Utilization" of 2017

SIP (Cross-Ministerial Strategic Innovation Promotion Program) (CSTI of Cabinet Office)

- SIP is created by CSTI to realize innovation through promoting R&D overarching basic to applied research and to commercialization by cross-ministerial cooperation.
- CSTI appoints Program Directors (PDs) for each project and allocates the budget.
- CSTI identifies innovation themes to be covered by SIP and each theme continues for 5 years.
- SIP "Energy Carriers" was selected as one of the 11 themes of SIP in 2014 and have been allocated about 30 M\$ every year.

Deputy PDs

Mr. Shiozawa

PD: Mr. Muraki 4 September 2018

6

11 Themes of SIP

Priority policy issues	Themes	Objective		
	Innovative Combustion Technology	Improving fuel efficiency of automobile engines		
Priority policy issues	Next-Generation Power Electronics	Integrating new semiconductor materials into highly efficient power electronics system		
	Structural Materials for Innovation(SM⁴I)	Developing ultra-strong and –light materials such as magnesium-, titanium- alloys and carbon fibers		
	Energy Carriers	Promoting R&D to contribute to the efficient and cost-effective technologies for utilizing hydrogen		
	Next-Generation Technology for Ocean Resources Exploration	Establishing technologies for efficiently exploring submarine hydrothermal polymetallic ore		
	Automated Driving System	Developing new transportation system including technologies for avoidance accidents and alleviating congestion		
Next-generation	Infrastructure Maintenance, Renovation and Management	Developing low-cost operation & maintenance system and long life materials for infrastructures		
infrastructures	Enhancement of Societal Resiliency against Natural Disasters	Objective Improving fuel efficiency of automobile engines Iss Integrating new semiconductor materials into highly efficient power electronics system n (SM ⁴ I) Developing ultra-strong and –light materials such as magnesium-, titanium- alloys and carbon fibers Promoting R&D to contribute to the efficient and cost-effective technologies for utilizing hydrogen Developing new transportation system including technologies for avoidance accidents and alleviating congestion ovation and Developing low-cost operation & maintenance system and long life materials for infrastructures cy against Development of technologies for observation, forecast and prediction of natural disasters uctures Realizing evolutionary high-yield and high-profit models by utilization of advanced IT etc Establishing new styles of innovations arising from regions using new technologies such as Additive Manufacturing		
	Cyber-Security for Critical Infrastructures	Development of technologies that monitor, analyze, and defend control and communication system as well as confirm integrity and authenticity of system components to protect critical infrastructures against cyber threats.		
Local resources	Technologies for Creating Next-Generation Agriculture, Forestry and Fisheries	Realizing evolutionary high-yield and high-profit models by utilization of advanced IT etc		
	Innovative Design/Manufacturing Technologies	Establishing new styles of innovations arising from regions using new technologies such as Additive Manufacturing		
ember 2018				

Envisaged CO₂ free hydrogen value chains

Energy Carriers; their physico-chemical properties

	H ₂ content (Wt %)	Volumetric H ₂ density (kg-H ₂ /m ³)	Boiling point (°C)	H ₂ release enthalpy change* (kJ/molH ₂)	Other properties
Liquefied Ammonia	17.8	121	-33.4	30.6	Acute toxicity, Corrosive
Methyl Cyclo- Hexane	6.16	47.3	101	67.5	Flammable, Irritative
Liquefied Hydrogen	100	70.8	-253	0.899	Very flammable, very combustible, explosive

MCH: Carry hydrogen using reversible chemical reaction between Toluene and Methyl Cyclohexane.

$$\bigcirc CH_3 + 3H_2 \qquad \longrightarrow \qquad \bigcirc CH_3$$

*H₂ release enthalpy change : Required energy to separate hydrogen other chemical substances.

NH₃ can be directly used as fuel

Recent Achievements (1/2)

Ammonia-fueled gas turbine power generation (Press Release: on Sept. 17, 2015)

50kW NH3 fueled micro gas turbine

< NO_X 100ppm at burner outlet by Lab. combustion test

Development of 2MW Gas Turbine is almost completed

Ammonia feed into a pulverized coal combustion power generation (*Press Released: on Jan. 10, 2017*)

- •20% of coal (LHV) was replaced by ammonia.
- Complete combustion and no significant increase of NOx emission.

NH₃ / pulverized coal flame

Co-fired ammonia at the commercial coal power plant (Press Release: on June 29 and Sept. 8, 2017)

The Chugoku Electric Power Co., INC. Mizushima Power Station

4 September 2018

NH₃ can be directly used as fuel Recent Achievements (2/2)

Industrial furnaces

(Press Release: on Oct. 31, 2016)

- Successfully controlled NOx generation below the environmental standard.
- Developed oxygen enriched combustion and staged combustion.

10kW model furnace

Direct ammonia-fueled solid oxide fuel cell (SOFC) (Press Release: on Jul. 3, 2017)

- •Ammonia-fueled SOFC stack generated 1 kW of electrical power.
- •The performance attained is equivalent to the hydrogen fueled SOFC.

Fuel cell stack

Development of CO₂ free NH₃ value chain

Power generation cost comparison between Energy Carriers

power	pl	ant
-------	----	-----

- domestic distribution
- vaporization
- dehydrogenation & refinement
- unloading place
- marine transportation
- Ioading place
- carrier production
- feedstocks hydrogen

NH₃ as H₂ Energy Carrier

- NH₃'s volumetric hydrogen content is significantly larger than that of other energy carriers (high H₂ content) ⇒ relatively compact infra.;
- (2) Transportation and storage technologies for NH_3 are already existing. Annually more than 18 M tons of NH_3 is being traded internationally.
- (3) NH_3 can be **directly used as fuel** without dehydrogenation. Thus it does not require input of energy in dehydrogenation.
- (4) NH₃ does not emit CO₂ in combustion. By R&D in SIP "Energy Carriers," it was found emission of NO_x in NH₃ combustion can be contained.
- (5) NH₃ has acute toxicity and strong smell. But not known chronic toxicity (US EPA Study) and easy to detect.
- (6) Energy equivalent cost of NH_3 is estimated to be **cheaper** than other CO_2 free energy carriers.
- (7) NH₃ has already widely being used as de-nitration agent in power generation plant sites.
- (8) CCS cost from NH₃ production plant is cheaper than that from gas turbine or boiler (cheaper CCS cost).

Objective:

Aiming at commercialization of CO_2 -free ammonia production and direct use technologies, development of road map towards the commercialization and promotion of collaboration between government and industry.

Studies to be conducted by the Consortium (examples):

(Production, transportation)

- (1) Production of CO_2 -free ammonia using CCS/EOR and renewable energy.
- (2) Scale up of production plants and cargo ships.
- (3) Supply capacity and supply chains.

(Use)

- (1) Feasibility study and engineering of coal-ammonia mixed combustion power generation.
- (2) Roadmap on ammonia combustion in small-medium-large scale gas turbines.
- (3) Roadmap on ammonia fueled SOFC.
- (4) Roadmap on ammonia utilization in industrial furnaces.

The Green Ammonia Consortium (present members)

Members

Mr. Muraki PD of SIP "Energy Carrier" Mr. Shiozawa Deputy PD	· IHI Corporation Manufactures	
 Chubu Electric Power Electric Power Development (J Power) Hokkaido Electric Power The Chugoku Electric Power The Kansai Electric Power Tohoku Electric Power Osaka Gas 	 Gas • JFE Engineering • JGC Corporation • Mitsubishi Heavy Industries • Mitsubishi Hitachi Power Systems • Toyota Central R&D Labs. • Toyota Energy Solutions • Toyota Industries Corporation • Toyota Motor Corporation 	
 Marubeni Corporation Mitsubishi Corporation Co. Mitsui & Co., LTD Supply Supply Tradin 	 and Central Research Institute of Electric Power Indust Japan Coal Energy Center 	ry
 · JGC Catalysts and Chemicals Ltd. · Nippon Shokubai · Noritake Co., Limited · Taiyo Nippon Sanso · Ube Industries 	 National Institute of Applied Industrial Science and Technology National Institute of Maritime, Port and Aviation Technology Research Institutes 	t v
4 September 2018	16	

Roadmap of Ammonia Supply Chain

All Rights Reserved by SIP

H₂/NH₃ related technology roadmap of the "Strategic Plan for Hydrogen Utilization" of 2017

Thank you very much for your attention.

Bunro Shiozawa

shiozawab@sc.sumitomo-chem.co.jp